Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Cooperation without Synchronization: Practical Cooperative Relaying for Wireless Networks

By: Shin, K.G.; Zhang, X.;

2015 / IEEE

Description

This item from - IEEE Transaction - Computing and Processing - Cooperative relay aims to realize the capacity of multi-antenna arrays in a distributed manner. However, the symbol-level synchronization requirement among distributed relays limits its use in practice. We propose to circumvent this barrier with a cross-layer protocol called Distributed Asynchronous Cooperation (DAC). With DAC, multiple relays can schedule concurrent transmissions with packet-level (hence coarse) synchronization. The receiver then extracts multiple versions of each relayed packet via a collision-resolution algorithm, thus realizing the diversity gain of cooperative communication. We demonstrate the feasibility of DAC by prototyping and testing it on the GNURadio/USRP software radio platform. To explore its relevance at the network level, we introduce a DAC-based medium access control (MAC) protocol, and a generic approach to integration of the DAC MAC/PHY layer into a typical routing algorithm. Considering the use of DAC for multiple network flows, we analyze the fundamental tradeoff between the improvement in diversity gain and the reduction in multiplexing opportunities. DAC is shown to improve the throughput and delay performance of lossy networks with intermediate link quality. Our analytical results have also been confirmed via network-level simulation with ns-2.