Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Exploiting binary translation for fast ASIP design space exploration on FPGAs

By: Meloni, P.; Pomata, S.; Lindwer, M.; Raffo, L.; Tuveri, G.;

2012 / IEEE / 978-1-4577-2145-8


This item was taken from the IEEE Conference ' Exploiting binary translation for fast ASIP design space exploration on FPGAs ' Complex Application Specific Instruction-set Processors (ASIPs) expose to the designer a large number of degrees of freedom, posing the need for highly accurate and rapid simulation environments. FPGA-based emulators represent an alternative to software cycle-accurate simulators, preserving maximum accuracy and reasonable simulation times. The work presented in this paper aims at exploiting FPGA emulation within technology aware design space exploration of ASIPs. The potential speedup provided by reconfigurable logic is reduced by the overhead of RTL synthesis/implementation. This overhead can be mitigated by reducing the number of FPGA implementation processes, through the adoption of binary-level translation. Hereby we present a prototyping method that, given a set of candidate ASIP configurations, defines an overdimensioned ASIP architecture, capable of emulating all the design space points under evaluation. This approach is then evaluated with a design space exploration case study. Along with execution time, by coupling FPGA emulation with activity-based physical modeling, we can extract area/power/energy figures.