Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Laser speckle imaging reveals multiple aspects of cerebral vascular responses to whole body mild hypothermia in rats

By: Nan Li; Xiaofeng Jia; Thakor, N.V.;

2011 / IEEE / 978-1-4577-1589-1

Description

This item was taken from the IEEE Conference ' Laser speckle imaging reveals multiple aspects of cerebral vascular responses to whole body mild hypothermia in rats ' In this paper, we present a novel method to study the effect of induced mild hypothermia on cerebral vascular responses. To measure cerebral vascular responses, a minimally invasive imaging method, temporal laser speckle imaging, was developed and adapted for induced-hypothermia rat model. Experiments were carried out in rats under anesthesia. Laser speckle images were acquired at different temperature points, normothermia (37 �Q and mild therapeutic hypothermia (34 �Q. We extracted multiple hemodynamic responses simultaneously from the images, including blood flow, vessel size and deoxy-hemoglobin saturation. A wide-field view of the cerebral vascular response distribution was studied, which showed an inhomogeneous response map across the region of interest. A comparison between responses in arterioles and venules was carried out (blood flow decreased by 58 � 9 % vs. 27 � 8 %). The global decrease of blood flow, dilatation in arterioles and decrease of deoxy-hemoglobin saturation in veins at mild hypothermia suggests a beneficial role of circulatory and oxygenation changes in therapeutic hypothermia. The results reported provide a circulatory explanation for the hypothermia therapeutic effects and mechanism.