Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Design and characterization of a miniaturized epi-illuminated microscope

By: Murari, K.; Thakor, N.; Cauwenberghs, G.; Etienne-Cummings, R.; Greenwald, E.;

2009 / IEEE / 978-1-4244-3296-7


This item was taken from the IEEE Conference ' Design and characterization of a miniaturized epi-illuminated microscope ' The ability to observe functional and morphological changes in the brain is critical in understanding behavioral and developmental neuroscience. With advances in electronics and miniaturization, electrophysiological recordings from awake, behaving animals has allowed investigators to perform a multitude of behavioral studies by observing changes as an animal is engaged in certain tasks. Imaging offers advantages of observing structure as well as function, and the ability to monitor activity over large areas. However, imaging from an awake, behaving animal has not been explored well. We present the design and characterization of a miniaturized epi-illuminated optical system that is part of a larger goal to perform optical imaging in awake, behaving animals. The system comprises of a tunable light source and imaging optics in a small footprint of 18 mm diameter, 18 mm height and weight 5.7 grams. It offers a spatial illumination non-uniformity of 3.2% over a maximum field of view of 1.5 mm �1.5 mm, negligible temporal illumination and temperature variation and controllable magnification. Uncorrected radial distortion was 5.3% (corrected to 1.8%) and the spatial frequency response was comparable to a reference system. The system was used to image cortical vasculature in an anesthetized rat.