Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Modeling of dielectric material interfaces for the Radial Point Interpolation Time-Domain method

By: Vahldieck, R.; Fumeaux, C.; Merz, T.; Kaufmann, T.;

2009 / IEEE / 978-1-4244-2803-8

Description

This item was taken from the IEEE Conference ' Modeling of dielectric material interfaces for the Radial Point Interpolation Time-Domain method ' The Radial Point Interpolation Time-Domain (RPITD) method is a flavor of meshless domain discretization methods applicable to computational electromagnetics. Meshless methods do not require an explicit mesh topology, but rather rely on a representation of a physical model as a node distribution. This is firstly advantageous for modeling of conformal boundaries and multi-scale geometries. But as the most attractive feature, the node arrangements can be adapted on-the-fly. The RPITD method is based on interpolation of the field distribution using radial and monomial basis functions. This paper introduces a technique to model arbitrarily shaped dielectric interfaces in the framework of meshless methods. Using the proposed technique, errors associated to the interpolation of non-smooth fields at material interfaces are reduced, as demonstrated for 2D-TE modes. This allows for accurate modeling of interfaces with dielectric contrast. Unlike previous publications which modify the basis functions at interfaces, a physically motivated correction term is introduced here. Errors in the vicinity of material interfaces decrease significantly and simulation accuracy is generally improved.