Use this resource - and many more! - in your textbook!
AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Region Sampling: Continuous Adaptive Sampling on Sensor Networks
By: Das, G.; Gunopulos, D.; Arai, B.; Song Lin;
2008 / IEEE / 978-1-4244-1836-7
Description
This item was taken from the IEEE Conference ' Region Sampling: Continuous Adaptive Sampling on Sensor Networks ' Satisfying energy constraints while meeting performance requirements is a primary concern when a sensor network is being deployed. Many recent proposed techniques offer error bounding solutions for aggregate approximation but cannot guarantee energy spending. Inversely, our goal is to bound the energy consumption while minimizing the approximation error. In this paper, we propose an online algorithm, Region Sampling, for computing approximate aggregates while satisfying a pre-defined energy budget. Our algorithm is distinguished by segmenting a sensor network into partitions of non-overlapping regions and performing sampling and local aggregation for each region. The sampling energy cost rate and sampling statistics are collected and analyzed to predict the optimal sampling plan. Comprehensive experiments on real-world data sets indicate that our approach is at a minimum of 10% more accurate compared with the previously proposed solutions.
Related Topics
Region Sampling
Continuous Adaptive Sampling
Sensor Networks
Energy Constraints
Nonoverlapping Regions
Sampling Energy Cost Rate
Sampling Statistics
Sampling Methods
Aggregates
Computer Science
Power Engineering And Energy
Energy Consumption
Partitioning Algorithms
Buildings
Condition Monitoring
Technical Activities Guide -tag
Adaptive Systems
Real-world Data Sets
Sampling Methods
Queueing Theory
Wireless Sensor Networks
Engineering
Error Bounding Solutions