Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Greatly enhanced power throughput from a "C"-shaped metallic nano-aperture for near field optical applications

By: Xiaolei Shi; Thornton, R.L.; Hesselink, L.;

2002 / IEEE / 1-55752-708-3

Description

This item was taken from the IEEE Conference ' Greatly enhanced power throughput from a "C"-shaped metallic nano-aperture for near field optical applications ' Summary form only given. Metal apertures with sizes down to 100 nm can provide deep sub-wavelength optical resolution in the near field region and are proposed for various applications such as ultra-high density optical data storage, nano-structure sensors et al. Unfortunately, the power throughputs from these nano-apertures are typically very low and this power deficiency problem hinders the practical use of the apertures. To overcome this problem, we investigate how the power throughput changes when we change the aperture geometry, using a numerical finite difference time-domain (FDTD) method. To testify the simulation result, we carried out experiments in the microwave frequency range. The microwave wavelength is 5 cm, which is 50,000 times the incident light wavelength in the simulation. The apertures are fabricated in a 0.5 mm thick copper plate. An intuitive understanding for the power throughput enhancement from the "C"-aperture can be achieved by considering the "C"-aperture as a short "ridge-waveguide", which has the unique property that its cutoff wavelength is much larger than twice the size of the waveguide. This simple understanding has been investigated to be quantitatively valid by comparing the cutoff wavelength of the ridge-waveguide and the resonance wavelength of the "C"-aperture.