Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Infinite-horizon model predictive control with structured input signals

By: van den Boom, T.J.J.;

2002 / IEEE / 0-7803-7298-0


This item was taken from the IEEE Conference ' Infinite-horizon model predictive control with structured input signals ' Model predictive control (MPC) is a very popular controller design method in the process industry. One of the main advantages of MPC is that it can handle constraints on the inputs and outputs and it is capable of tracking pre-scheduled reference signals. In the paper the infinite prediction horizon problem is discussed. The input signal has been structured, in order to be able to handle signal constraints, to track pre-scheduled reference signals and to reject measurable disturbances. Beyond a switching horizon, the input signal is described by a number of (orthogonal) basis functions or a static state feedback. By structuring the input, the degrees of freedom in the resulting optimization problem remains bounded. The optimal infinite-horizon model predictive control-law is given in a closed form. In the unconstrained case an expression for the LTI controller is derived.