Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Improved external coupling efficiency in organic light-emitting devices on high-index substrates

By: Lu, M.-H.; Sturm, J.C.; Madigan, C.F.;

2000 / IEEE / 0-7803-6438-4

Description

This item was taken from the IEEE Conference ' Improved external coupling efficiency in organic light-emitting devices on high-index substrates ' High-index-of-refraction substrates are shown theoretically and experimentally to increase the external coupling efficiency of organic light-emitting devices (OLEDs) by using a quantum mechanical microcavity model. This increase is due to the elimination of those modes waveguided in the ITO/organic layer. Bi-layer OLEDs were fabricated on standard soda lime glass and high-index glass substrates, and their far-field intensity pattern was measured. Among the devices optimized for external efficiency, those on shaped high-index substrates exhibited a 53% improvement in external quantum efficiency over the devices on shaped standard glass substrates, and an increase by a factor of 2-3 times over those on planar glass substrates. This principle is applicable to any backside patterning technique in conjunction with other OLED structural improvements.