Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Representative traces for processor models with infinite cache

By: Bose, P.; Trevillyan, L.H.; Iyengar, V.S.;

1996 / IEEE / 0-8186-7237-4


This item was taken from the IEEE Periodical ' Representative traces for processor models with infinite cache ' Performance evaluation of processor designs using dynamic instruction traces is a critical part of the iterative design process. The widening gap between the billions of instructions in such traces for benchmark programs and the throughput of timers performing the analysis in the tens of thousands of instructions per second has led to the use of reduced traces during design. This opens up the issue of whether these traces are truly representative of the actual workload in these benchmark programs. The first key result in this paper is the introduction of a new metric, called the R-metric, to evaluate the representativeness of these reduced traces when applied to a wide class of processor designs. The second key result, is the development of a novel graph-based heuristic to generate reduced traces based on the notions incorporated in the metric. These ideas have been implemented in a prototype system (SMART) for generating representative and reduced traces. Extensive experimental results are presented on various benchmarks to demonstrate the quality of the synthetic traces and the uses of the R-metric.