Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Thermal Balancing Policy for Multiprocessor Stream Computing Platforms

By: Benini, L.; Carta, S.; Acquaviva, A.; Atienza, D.; Mulas, F.; De Micheli, G.;

2009 / IEEE

Description

This item was taken from the IEEE Periodical ' Thermal Balancing Policy for Multiprocessor Stream Computing Platforms ' Die-temperature control to avoid hotspots is increasingly critical in multiprocessor systems-on-chip (MPSoCs) for stream computing. In this context, thermal balancing policies based on task migration are a promising approach to redistribute power dissipation and even out temperature gradients. Since stream computing applications require strict quality of service and timing constraints, the real-time performance impact of thermal balancing policies must be carefully evaluated. In this paper, we present the design of a lightweight thermal balancing policy MiGra, which bounds on-chip temperature gradients via task migration. The proposed policy exploits run-time temperature as well as workload information of streaming applications to define suitable run-time thermal migration patterns, which minimize the number of deadline misses. Furthermore, we have experimentally assessed the effectiveness of our thermal balancing policy using a complete field-programmable-gate-array-based emulation of an actual three-core MPSoC streaming platform coupled with a thermal simulator. Our results indicate that MiGra achieves significantly better thermal balancing than state-of-the-art thermal management solutions while keeping the number of migrations bounded.