Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Synthesis of Predictable Networks-on-Chip-Based Interconnect Architectures for Chip Multiprocessors

By: Raffo, L.; De Micheli, G.; Benini, L.; Carta, S.; Meloni, P.; Atienza, D.; Murali, S.;

2007 / IEEE


This item was taken from the IEEE Periodical ' Synthesis of Predictable Networks-on-Chip-Based Interconnect Architectures for Chip Multiprocessors ' Today, chip multiprocessors (CMPs) that accommodate multiple processor cores on the same chip have become a reality. As the communication complexity of such multicore systems is rapidly increasing, designing an interconnect architecture with predictable behavior is essential for proper system operation. In CMPs, general-purpose processor cores are used to run software tasks of different applications and the communication between the cores cannot be precharacterized. Designing an efficient network-on-chip (NoC)-based interconnect with predictable performance is thus a challenging task. In this paper, we address the important design issue of synthesizing the most power efficient NoC interconnect for CMPs, providing guaranteed optimum throughput and predictable performance for any application to be executed on the CMP. In our synthesis approach, we use accurate delay and power models for the network components (switches and links) that are obtained from layouts of the components using industry standard tools. The synthesis approach utilizes the floorplan knowledge of the NoC to detect timing violations on the NoC links early in the design cycle. This leads to a faster design cycle and quicker design convergence across the high-level synthesis approach and the physical implementation of the design. We validate the design flow predictability of our proposed approach by performing a layout of the NoC synthesized for a 25-core CMP. Our approach maintains the regular and predictable structure of the NoC and is applicable in practice to existing NoC architectures.