Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

A Moving Average Non-Homogeneous Poisson Process Reliability Growth Model to Account for Software with Repair and System Structures

By: Wen-Li Wang; Mei-Huei Tang; Hemminger, T.L.;

2007 / IEEE

Description

This item was taken from the IEEE Periodical ' A Moving Average Non-Homogeneous Poisson Process Reliability Growth Model to Account for Software with Repair and System Structures ' We develop a moving average non-homogeneous Poisson process (MA NHPP) reliability model which includes the benefits of both time domain, and structure based approaches. This method overcomes the deficiency of existing NHPP techniques that fall short of addressing repair, and internal system structures simultaneously. Our solution adopts a MA approach to cover both methods, and is expected to improve reliability prediction. This paradigm allows software components to vary in nature, and can account for system structures due to its ability to integrate individual component reliabilities on an execution path. Component-level modeling supports sensitivity analysis to guide future upgrades, and updates. Moreover, the integration capability is a benefit for incremental software development, meaning only the affected portion needs to be re-evaluated instead of the entire package, facilitating software evolution to a higher extent than with other methods. Several experiments on different system scenarios and circumstances are discussed, indicating the usefulness of our approach.