Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

A low dark current InGaAs/InP p-i-n photodiode with covered mesa structure

By: Kubo, M.; Ohnaka, K.; Shibata, J.;

1987 / IEEE


This item was taken from the IEEE Periodical ' A low dark current InGaAs/InP p-i-n photodiode with covered mesa structure ' A new InGaAs p-i-n photodiode with a covered mesa (CM) structure having extremely low dark current characteristics and high yields has been developed. The device consists of only two epitaxial layers: n--InP and n--InGaAs, continuously grown on an n+-InP substrate by liquid-phase epitaxy. The InGaAs layer is chemically etched to be a tapered shape in order to make the fabrication process simple, as compared with a conventional mesa diode. The Zn diffusion to form a p-n junction is carried out without a diffusion mask such as Si3N4or SiO2, which induces damage due to the thermal stress. The tapered-shape InGaAs layer is covered with the Zn-diffused layer because a surface p-n junction occurring in an InGaAs region is leaky. Therefore, the surface p-n junction of the photodiode appears in the n--InP layer, which has a bandgap about two times wider than the InGaAs. Finally, the passivation of the surface p-n junction is carried out with a Si3N4film formed by a plasma-assisted chemical vapor deposition. We have successfully achieved an extremely low dark current of 20 pA at a reverse bias voltage of 10 V and a high yield of 80 percent, by adopting the CM structure and the simple fabrication process.