Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Dependence of Cell Distance and Well-Contact Density on MCU Rates by Device Simulations and Neutron Experiments in a 65-nm Bulk Process

By: Furuta, J.; Zhangd, K.; Onodera, H.; Kobayashi, K.;

2014 / IEEE

Description

This item from - IEEE Transaction - Nuclear Engineering - Technology scaling increases the role of charge sharing and bipolar effect with respect to multiple cell upset. We analyze the contributions of cell distance and well-contact density to suppress MCU by device-level simulations and neutron experiments. Device simulation results reveal that the ratio of MCU to SEU exponentially decreases by increasing the distance between redundant latches. MCU is suppressed when well contacts are placed between redundant latches. Experimental results also show that the ratio of MCU to SEU exponentially decreases by increasing the distance between cells. MCU is suppressed effectively by increasing the density of well contacts.