Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Topic Language Model Adaption for Recognition of Homologous Offline Handwritten Chinese Text Image

By: Liu, C.; Ding, X.; Wang, Y.;

2014 / IEEE


This item from - IEEE Letter - Signal Processing and Analysis - As the content of a full text page usually focuses on a specific topic, a topic language model adaption method is proposed to improve the recognition performance of homologous offline handwritten Chinese text image. Firstly, the text images are recognized with a character based bi-gram language model. Secondly, the topic of the text image is matched adaptively. Finally, the text image is recognized again with the best matched topic language model. To obtain a tradeoff between the recognition performance and computational complexity, a restricted topic language model adaption method is further presented. The methods have been evaluated on 100 offline Chinese text images. Compared to the general language model, the topic language model adaption has reduced the relative error rate by 11.94%. The restricted topic language model has lessened the running time by 19.22% at the cost of losing 0.35% of the accuracy.