Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Comparison of the Modular Multilevel DC Converter and the Dual-Active Bridge Converter for Power Conversion in HVDC and MVDC Grids

By: Engel, S. P.; De Doncker, R. W.; Stagge, H.; Rabiee, S.; Soltau, N.; Stieneker, M.;

2015 / IEEE

Description

This item from - IEEE Transaction - Power, Energy and Industry Applications - It is expected that in the near future the use of high-voltage dc (HVDC) transmission and medium-voltage dc (MVDC) distribution technology will expand. This development is driven by the growing share of electrical power generation by renewable energy sources that are located far from load centers and the increased use of distributed power generators in the distribution grid. Power converters that transfer the electric energy between voltage levels and control the power flow in dc grids will be key components in these systems. The recently presented modular multilevel dc converter (M2DC) and the three-phase dual-active bridge converter (DAB) are benchmarked for this task. Three scenarios are examined: a 15 MW converter for power conversion from an HVDC grid to an MVDC grid of a university campus, a gigawatt converter for feeding the energy from an MVDC collector grid of a wind farm into the HVDC grid, and a converter that acts as a power controller between two HVDC grids with the same nominal voltage level. The operation and degrees of freedom of the M2DC are investigated in detail aiming for an optimal design of this converter. The M2DC and the DAB converter are thoroughly compared for the given scenarios in terms of efficiency, amount of semiconductor devices, and expense on capacitive storage and magnetic components.