Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Multiple Reflections Induced Crosstalk in Inline TDM Fiber Fabry-Perot Sensor System Utilizing Phase Generated Carrier Scheme

By: Ma, L.; Lin, H.; Hu, Y.; Yao, Q.; Hu, Z.;

2013 / IEEE

Description

This item from - IEEE Journal - Communication, Networking and Broadcast Technologies - An inline time-division multiplexing fiber Fabry-Perot (TDM-FFP) sensor system based on low-reflectivity fiber Bragg gratings (FBGs) is ideally suited to many applications. The intrinsic multiple reflections crosstalk (MRC) phenomenon in the inline TDM-FFP sensor system is a serious problem that limits the multiplexing number of sensors, which hindrances its practical applications. In this paper, a detailed analysis of the MRC in the inline TDM-FFP sensor system using phase generated carrier (PGC) scheme is reported. The equations of the interference intensity in the inline TDM-FFP sensor system with two sensors are deduced. The characteristics of the MRC are theoretically analyzed according to the equations and experimentally demonstrated. Finally, the instability of the MRC induced by random phase relationships of the sensors is analyzed using statistical method. The experimental results show that the crosstalk from the first sensor to the second sensor is ranged from -36.48 to -67.64 dB and to the third sensor is ranged from - 16.02 to - 60.64 dB.