Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Touchard–Riordan formulas, T-fractions, and Jacobi’s triple product identity

By: Matthieu Josuat-Vergès; Jang Kim;

2013 / Springer Science+Business Media / 1382-4090


Touchard–Riordan-like formulas are certain expressions appearing in enumeration problems and as moments of orthogonal polynomials. We begin this article with a new combinatorial approach to prove such formulas, related to integer partitions. This gives a new perspective on the original result of Touchard and Riordan. But the main goal is to give a combinatorial proof of a Touchard–Riordan-like formula for -secant numbers, and a particular case of Jacobi’s triple product identity. Building on this particular case, we obtain a “finite version” of the triple product identity. It is in the form of a finite sum which is given a combinatorial meaning, so that the triple product identity can be obtained by taking the limit. Here the proof is non-combinatorial and relies on a functional equation satisfied by a T-fraction. Then from this result on the triple product identity, we derive a whole new family of Touchard–Riordan-like formulas whose combinatorics is not yet understood. Eventually, we prove a Touchard–Riordan-like formula for a rather than the triple product identity.