Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Drive-by-Microwave technologies for isolated direct gate drivers

By: Ueda, D.; Fukuda, T.; Negoro, N.; Nagai, S.; Sakai, H.; Otsuka, N.; Tanaka, T.; Ueda, T.;

2012 / IEEE / 978-1-4673-1780-1


This item was taken from the IEEE Conference ' Drive-by-Microwave technologies for isolated direct gate drivers ' The wireless power transmission technology using an electro-magnetic resonant coupler (EMRC) has been applied to an isolated direct gate driver for GaN power switching devices. This direct gate driver with the Drive-by-Microwave technologies dose not needs an additional isolated voltage source and a photo-coupler because it can supply an isolated gate signal and signal power all together. The wireless power transmission capability in the driver is crucial for its performances, especially, regarding a switching speed and power consumption. This paper presents the potential of GaN/Sapphire direct gate driver using 5.8GHz wireless power transmission with a compact butterfly-shaped EMRC. Since the fabricated direct gate driver with the integrated EMRC drove a GaN power switching device with a fast turn on/off time, it is proved that the GaN/Sapphire HFETs is best suitable for the direct gate driver.