Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Workload-aware voltage regulator optimization for power efficient multi-core processors

By: Hao Wang; Sinkar, A.A.; Nam Sung Kim;

2012 / IEEE / 978-1-4577-2145-8

Description

This item was taken from the IEEE Conference ' Workload-aware voltage regulator optimization for power efficient multi-core processors ' Modern multi-core processors use power management techniques such as dynamic voltage and frequency scaling (DVFS) and clock gating (CG) which cause the processor to operate in various performance and power states depending on runtime workload characteristics. A voltage regulator (VR), which is designed to provide power to the processor at its highest performance level, can significantly degrade in efficiency when the processor operates in the deep power saving states. In this paper, we propose VR optimization techniques to improve the energy efficiency of the processor + VR system by using the workload dependent P- and C-state residency of real processors. Our experimental results for static VR optimization show up to 19%, 20%, and 4% reduction in energy consumption for workstation, mobile and server multi-core processors. We also investigate the effect of dynamically changing VR parameters on the energy efficiency compared to the static optimization.