Use this resource - and many more! - in your textbook!
AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Online algorithms for the multi-armed bandit problem with Markovian rewards
By: Mingyan Liu; Tekin, C.;
2010 / IEEE / 978-1-4244-8216-0
Description
This item was taken from the IEEE Conference ' Online algorithms for the multi-armed bandit problem with Markovian rewards ' We consider the classical multi-armed bandit problem with Markovian rewards. When played an arm changes its state in a Markovian fashion while it remains frozen when not played. The player receives a state-dependent reward each time it plays an arm. The number of states and the state transition probabilities of an arm are unknown to the player. The player's objective is to maximize its long-term total reward by learning the best arm over time. We show that under certain conditions on the state transition probabilities of the arms, a sample mean based index policy achieves logarithmic regret uniformly over the total number of trials. The result shows that sample mean based index policies can be applied to learning problems under the rested Markovian bandit model without loss of optimality in the order. Moreover, comparision between Anantharam's index policy and UCB shows that by choosing a small exploration parameter UCB can have a smaller regret than Anantharam's index policy.
Related Topics
Learning (artificial Intelligence)
Markov Processes
Index Policy
Online Algorithms
Multiarmed Bandit Problem
Markovian Rewards
State Transition Probabilities
Long-term Total Reward
Learning
Markov Processes
Indexes
Silicon
Eigenvalues And Eigenfunctions
Space Stations
Context
Numerical Models
Game Theory
Probability
Engineering
State-dependent Reward