Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Congestion games with resource reuse and applications in spectrum sharing

By: Mingyan Liu; Yunnan Wu; Ahmad, S.H.A.;

2009 / IEEE / 978-1-4244-4176-1


This item was taken from the IEEE Conference ' Congestion games with resource reuse and applications in spectrum sharing ' In this paper we consider an extension to the classical definition of congestion games (CG) in which multiple users share the same set of resources and their payoff for using any resource is a function of the total number of users sharing it. The classical congestion games enjoy some very appealing properties, including the existence of a Nash equilibrium and that every improvement path is finite and leads to such a NE (also called the finite improvement property or FIP), which is also a local optimum to a potential function. On the other hand, this class of games does not model well the congestion or resource sharing in a wireless context, a prominent feature of which is spatial reuse. What this translates to in the context of a congestion game is that a user's payoff for using a resource (interpreted as a channel) is a function of the its number of its interfering users sharing that channel, rather than the total number among all users. This makes the problem quite different. We will call this the congestion game with resource reuse (CG-RR). In this paper we study intrinsic properties of such a game; in particular, we seek to address under what conditions on the underlying network this game possesses the FIP or NE. We also discuss the implications of these results when applied to wireless spectrum sharing.