Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Digitally-controlled steered-inductor buck converter for improving heavy-to-light load transient response

By: Prodic, A.; Lukic, Z.; Stupar, A.;

2008 / IEEE / 978-1-4244-1667-7

Description

This item was taken from the IEEE Conference ' Digitally-controlled steered-inductor buck converter for improving heavy-to-light load transient response ' In this paper a novel digital controller and modified buck converter for improving heavy-to-light load transient response of low-power low-voltage dc-dc converters is introduced. The system is primarily designed for point-of-load (PoL) converters providing low regulated voltages for digital loads. In conventional buck topologies, the low output voltage, often below 1 V, severely limits the inductor current slew rate during the transients. To overcome this physical limitation, a modification is introduced whereby during heavy-to-fight transients, the inductor current is, by the means of two extra switches, steered into the source and at the same time, the slew-rate of the current is significantly increased. The steering action is governed by a digital controller. The effectiveness of the system is verified on an FPGA-controlled, 12 V to 0.9 V, 10 W, experimental prototype. The results show that the steered-inductor digitally controlled buck converter has much shorter settling time and provides 2.8 times smaller overshoot than the conventional buck.