Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Improved GMM-based language recognition using constrained MLLR transforms

By: Wade Shen; Reynolds, D.;

2008 / IEEE / 978-1-4244-1483-3

Description

This item was taken from the IEEE Conference ' Improved GMM-based language recognition using constrained MLLR transforms ' In this paper we describe the application of a feature-space transform based on constrained maximum likelihood linear regression for unsupervised compensation of channel and speaker variability to the language recognition problem. We show that use of such transforms can improve baseline GMM-based language recognition performance on the 2005 NIST Language Recognition Evaluation (LRE05) task by 38%. Furthermore, gains from CMLLR are additive with other modeling enhancements such as vocal tract length normalization (VTLN). Further improvement is obtained using discriminative training, and it is shown that a system using only CMLLR adaption produces state-of-the-art accuracy with decreased test-time computational cost than systems using VTLN.