Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Fault Diagnosis of an Actuator in the Attitude Control Subsystem of a Satellite using Neural Networks

By: Li, Z.Q.; Khorasani, K.; Ma, L.;

2007 / IEEE / 978-1-4244-1379-9

Description

This item was taken from the IEEE Conference ' Fault Diagnosis of an Actuator in the Attitude Control Subsystem of a Satellite using Neural Networks ' The goal of this paper is to develop a neural network-based scheme for fault detection and isolation in reaction wheels (actuators) of a satellite. To achieve this objective, three neural networks are developed for modeling the dynamics of a reaction wheel on all the three axes separately. A recurrent neural network with backpropagation training algorithm is considered for representing the highly nonlinear dynamics of the actuator. The capabilities and potential of the proposed neural network-based fault detection and isolation (FDI) methodology is investigated and a comparative study is conducted with the performance of a generalized Luenberger observer-based scheme. Simulation results demonstrate clearly the advantages of our proposed neural network scheme studied in this paper.