Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Network localization in partially localizable networks

By: Krishnamurthy, A.; Goldenberg, D.K.; Savvides, A.; Morse, A.S.; Young, A.; Yang, Y.R.; Maness, W.C.;

2005 / IEEE / 0-7803-8968-9


This item was taken from the IEEE Conference ' Network localization in partially localizable networks ' Knowing the positions of the nodes in a network is essential to many next generation pervasive and sensor network functionalities. Although many network localization systems have recently been proposed and evaluated, there has been no systematic study of partially localizable networks, i.e., networks in which there exist nodes whose positions cannot be uniquely determined. There is no existing study which correctly identifies precisely which nodes in a network are uniquely localizable and which are not. This absence of a sufficient uniqueness condition permits the computation of erroneous positions that may in turn lead applications to produce flawed results. In this paper, in addition to demonstrating the relevance of networks that may not be fully localizable, we design the first framework for two dimensional network localization with an efficient component to correctly determine which nodes are localizable and which are not. Implementing this system, we conduct comprehensive evaluations of network localizability, providing guidelines for both network design and deployment. Furthermore, we study an integration of traditional geographic routing with geographic routing over virtual coordinates in the partially localizable network setting. We show that this novel cross-layer integration yields good performance, and argue that such optimizations will be likely be necessary to ensure acceptable application performance in partially localizable networks.