Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

A New General Framework for Shot Boundary Detection Based on SVM

By: Sen Liu; Wei Fang; Huamin Feng; Yong Fang;

2005 / IEEE / 0-7803-9422-4


This item was taken from the IEEE Conference ' A New General Framework for Shot Boundary Detection Based on SVM ' Video shot boundary detection is an important step in many video applications. Since the rapid development of video editing technology, especially, the extensive use of subwindow in news video, the original method of video segmentation cannot efficiently detect the video shot boundary caused by special video technique. In this paper, previous temporal multi-resolution analysis (TMRA) work was extended by first using SVM (Supported Vector Machines) classify the video frames within a sliding window into normal frames, gradual transition frames and CUT frames, then clustering the classified frames into different shot categories. The experimental result on ground truth, which has about 26 hours (13,344 shots) news video clips, shows that the new framework has relatively good accuracy for the detection of shot boundaries. It basically resolves the difficulties of shot boundaries detection caused by sub-window technique in video. The framework also greatly improves accuracy of gradual transitions of shot.