Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Electron Cooling of RHIC

By: Ben-Zvi, I.; Litvinenko, V.; Barton, D.; Beavis, D.; Blaskiewicz, M.; Brennan, J.; Burrill, A.; Calaga, R.; Cameron, P.; Chang, X.; Connolly, R.; Eidelman, Y.; Fedotov, A.; Fischer, W.; Gassner, D.; Hahn, H.; Harrison, M.; Hershcovitch, A.; Hseuh, H.-C.; Jain, A.; Johnson, P.; Kayran, D.; Kewisch, J.; Lambiase, R.; Mackay, W.; Mahler, G.; Malitsky, N.; McIntyre, G.; Meng, W.; Mirabella, K.; Montag, C.; Nehring, T.; Nicoletti, A.; Oerter, B.; Parzen, G.; Pate, D.; Rank, J.; Roser, T.; Russo, T.; Scaduto, J.; Smith, K.; Rao, T.; Trbojevic, D.; Wang, G.; Wei, J.; Williams, N.; Wu, K.-C.; Yakimenko, V.; Zaltsman, A.; Zhao, Y.; Bluem, H.; Burger, A.; Cole, M.; Favale, A.; Holmes, D.; Rathke, J.; Schultheiss, T.; Todd, A.; Koop, I.; Parkhomchuk, V.; Shatunov, Y.; Skrinsky, A.; Sekutowicz, J.; Burov, A.; Nagaitsev, S.; Meshkov, I.; Sidorin, A.; Smirnov, A.; Troubnikov, G.; Abell, D.; Bruhwiler, D.; Delayen, J.; Derbenev, Y.; Funk, W.; Kneisel, P.; Merminga, L.; Phillips, L.; Preble, J.;

2005 / IEEE / 0-7803-8859-3

Description

This item was taken from the IEEE Conference ' Electron Cooling of RHIC ' We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV.