Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Optimal power control for discrete-rate link adaptation schemes with capacity-approaching coding

By: Gjendemsjo, A.; Holm, H.; Oien, G.E.;

2005 / IEEE / 0-7803-9414-3

Description

This item was taken from the IEEE Conference ' Optimal power control for discrete-rate link adaptation schemes with capacity-approaching coding ' In wireless communications, bandwidth is a scarce resource. By employing link adaptation we achieve bandwidth-efficient wireless transmission schemes. We propose a variable-power transmission scheme for slowly varying flat-fading channels using a fixed number of codes. Assuming that capacity-achieving codes for AWGN channels are available, the proposed power adaptation scheme maximizes the average spectral efficiency (ASE) for any finite number N of available rates. We show that the power adapted transmission scheme, using just four different rates, achieves a spectral efficiency within 0.15 bits/s/Hz of the Shannon capacity for continuous rate and power adaptation. Further, when restricted to N optimally chosen rates, introducing power adaptation has significant ASE and outage probability gains over a constant power scheme.