Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Residual thermal effects in Al following single ns- and fs-laser pulse ablation

By: A.Y. Vorobyev; V.M. Kuzmichev; N.G. Kokody; P. Kohns; J. Dai; Chunlei Guo;

2006 / Springer Science+Business Media / 0947-8396

Description

A comparative study of residual thermal effects in aluminum following ns- and fs-laser ablation shows a surprisingly similar trend in their behavior, despite many differences between ns and fs laser-matter interactions. At laser fluences above the ablation threshold where plasmas are produced and at a sufficiently high ambient gas pressure, an enhanced coupling of pulsed laser energy to the sample occurs. This effect appears to be a universal phenomenon for both ns- and fs-laser ablation in gas media. Furthermore, in contrast to the common belief that residual thermal energy is negligible in fs-laser ablation, our study shows that up to 70% of the incident pulse energy can be retained in the sample following single-pulse fs-laserablation in 1-atm air. In both ns- and fs-laser ablation, the major factors governing thermal energy coupling to the sample are the laser fluence and ambient gas pressure. Residual thermal energy deposition decreases with reducing ambient gas pressure.

Related Topics