Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Contextual hidden Markov models for wavelet-domain signal processing

By: Crouse, M.S.; Baraniuk, R.G.;

1997 / IEEE / 0-8186-8316-3

Description

This item was taken from the IEEE Conference ' Contextual hidden Markov models for wavelet-domain signal processing ' Wavelet-domain hidden Markov models (HMMs) provide a powerful new approach for statistical modeling and processing of wavelet coefficients. In addition to characterizing the statistics of individual wavelet coefficients, HMMs capture some of the key interactions between wavelet coefficients. However, as HMMs model an increasing number of wavelet coefficient interactions, HMM-based signal processing becomes increasingly complicated. In this paper, we propose a new approach to HMMs based on the notion of context. By modeling wavelet coefficient inter-dependencies via contexts, we retain the approximation capabilities of HMMs, yet substantially reduce their complexity. To illustrate the power of this approach, we develop new algorithms for signal estimation and for efficient synthesis of nonGaussian, long-range-dependent network traffic.