Use this resource - and many more! - in your textbook!
AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Application of 3-layer perceptrons to cost estimation
By: Shouju Ren; Bode, J.; Zhongzhi Shi;
1995 / IEEE / 0-7803-2768-3
Description
This item was taken from the IEEE Periodical ' Application of 3-layer perceptrons to cost estimation ' During planning and designing of new products the design managers are interested in estimating the cost as early as possible. However, at the early design stage only a few attributes of the future product are known, and their impact on cost is not clear to the cost estimation expert. Neural networks can be used to detect the hidden relationships between cost drivers and the cost of a new product, and estimate the cost after being presented a small set of conceptual attributes describing the product. Based on a laboratory benchmark example with artificial data we present our experiments on classification perceptrons with one hidden layer. The attention is focused on the problem of small number of training samples available in the domain. The results of three possible remedies are presented namely: prewiring background knowledge, preprocessing input data, and transforming input data.
Related Topics
Economics
Multilayer Perceptrons
Manufacturing Data Processing
Input Data Transformation
Three-layer Perceptrons
Cost Estimation
Neural Networks
Background Knowledge
Input Data Preprocessing
Phase Estimation
Cost Function
Product Design
Neural Networks
Artificial Neural Networks
Delay Estimation
Testing
Design Automation
Computers
Technology Planning
Costing
Production Control
Accounts Data Processing
Engineering
New Products