Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

An Inkjet-Printed Solar-Powered Wireless Beacon on Paper for Identification and Wireless Power Transmission Applications

By: Georgiadis, A.; Kim, S.; Tentzeris, M.M.; Collado, A.;

2012 / IEEE

Description

This item was taken from the IEEE Periodical ' An Inkjet-Printed Solar-Powered Wireless Beacon on Paper for Identification and Wireless Power Transmission Applications ' This paper demonstrates the design of an 800-MHz solar-powered active wireless beacon composed of an antenna and an integrated oscillator on a low-cost paper substrate. Inkjet printing is used to fabricate the conductive circuit traces and the folded slot antenna, while the oscillator circuit is designed using off-the-shelf components mounted on the paper substrate. Flexible, low-cost, amorphous silicon (a-Si) solar cells are placed on top of the slot ground and provide autonomous operation of the active circuit eliminating the use of a battery. A prototype is built and characterized in terms of phase noise, radiation patterns, and the effect of solar irradiance. Such low-cost flexible circuits can find significant applications as beacon generator circuits for real-time identification and position purposes, wearable biomonitoring as well as solar-to-wireless power transfer topologies. The measured phase noise is -116 dBc/Hz at 1-MHz offset, while drain current is 4 mA and supply voltage is 1.8 V.