Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Sensitivity Improvement of Spin-Exchange Relaxation Free Atomic Magnetometers by Hybrid Optical Pumping of Potassium and Rubidium

By: Kamada, K.; Ohnishi, H.; Ito, Y.; Kobayashi, T.;

2011 / IEEE

Description

This item was taken from the IEEE Periodical ' Sensitivity Improvement of Spin-Exchange Relaxation Free Atomic Magnetometers by Hybrid Optical Pumping of Potassium and Rubidium ' An optically pumped atomic magnetometer using a hybrid cell of potassium and rubidium atoms was demonstrated to yield high sensitivity to magnetic fields. We operated the magnetometer with the four possible combinations of optically pumped and optically probed atoms and found that the combination of optically pumped potassium and optically probed rubidium showed the highest sensitivity among the four combinations because the rubidium atoms were denser than those of potassium. Furthermore, we investigated the dependence of the sensitivity on the power densities of the pump and probe beams and the wavelength of the probe beam. The magnetometer using the hybrid cell required higher pump-beam power and had narrower magnetic linewidth than those of the single alkali-metal cell. However, the magnetic linewidth was larger than the theoretical value, ignoring the spin relaxation caused by the spin-exchange collisions. By adjusting the laser conditions, the highest sensitivity approached 30 fTrms/Hz1/2.