Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

On the Structure of Real-Time Encoding and Decoding Functions in a Multiterminal Communication System

By: Teneketzis, D.; Nayyar, A.;

2011 / IEEE

Description

This item was taken from the IEEE Periodical ' On the Structure of Real-Time Encoding and Decoding Functions in a Multiterminal Communication System ' A real-time communication system with two encoders communicating with a single receiver over separate noisy channels is considered. The two encoders make distinct partial observations of a Markov source. Each encoder must encode its observations into a sequence of discrete symbols. The symbols are transmitted over noisy channels to a finite memory receiver that attempts to reconstruct some function of the state of the Markov source. Encoding and decoding must be done in real-time, that is, the distortion measure does not tolerate delays. Under the assumption that the encoders' observations are conditionally independent Markov chains given an unobserved time-invariant random variable, results on the structure of optimal real-time encoding and decoding functions are obtained. It is shown that there exist finite-dimensional sufficient statistics for the encoders. The problem with noiseless channels and perfect memory at the receiver is then considered. A new methodology to find the structure of optimal real-time encoders is employed. A sufficient statistic with a time-invariant domain is found for this problem. This methodology exploits the presence of common information between the encoders and the receiver when communication is over noiseless channels.