Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Measurement Scheduling for Soil Moisture Sensing: From Physical Models to Optimal Control

By: Shuman, D.I.; Entekhabi, D.; Moghaddam, M.; Teneketzis, D.; Mingyan Liu; Ke Li; Goykhman, Y.; Mahajan, A.; Nayyar, A.;

2010 / IEEE


This item was taken from the IEEE Periodical ' Measurement Scheduling for Soil Moisture Sensing: From Physical Models to Optimal Control ' In this paper, we consider the problem of monitoring soil moisture evolution using a wireless network of in situ sensors. Continuously sampling moisture levels with these sensors incurs high-maintenance and energy consumption costs, which are particularly undesirable for wireless networks. Our main hypothesis is that a sparser set of measurements can meet the monitoring objectives in an energy-efficient manner. The underlying idea is that we can trade off some inaccuracy in estimating soil moisture evolution for a significant reduction in energy consumption. We investigate how to dynamically schedule the sensor measurements so as to balance this tradeoff. Unlike many prior studies on sensor scheduling that make generic assumptions on the statistics of the observed phenomenon, we obtain statistics of soil moisture evolution from a physical model. We formulate the optimal measurement scheduling and estimation problem as a partially observable Markov decision problem (POMDP). We then utilize special features of the problem to approximate the POMDP by a computationally simpler finite-state Markov decision problem (MDP). The result is a scalable, implementable technology that we have tested and validated numerically and in the field.