Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Intrinsic Sensor Noise Features for Forensic Analysis on Scanners and Scanned Images

By: Hongmei Gou; Min Wu; Swaminathan, A.;

2009 / IEEE


This item was taken from the IEEE Periodical ' Intrinsic Sensor Noise Features for Forensic Analysis on Scanners and Scanned Images ' A large portion of digital images available today are acquired using digital cameras or scanners. While cameras provide digital reproduction of natural scenes, scanners are often used to capture hard-copy art in a more controlled environment. In this paper, new techniques for nonintrusive scanner forensics that utilize intrinsic sensor noise features are proposed to verify the source and integrity of digital scanned images. Scanning noise is analyzed from several aspects using only scanned image samples, including through image denoising, wavelet analysis, and neighborhood prediction, and then obtain statistical features from each characterization. Based on the proposed statistical features of scanning noise, a robust scanner identifier is constructed to determine the model/brand of the scanner used to capture a scanned image. Utilizing these noise features, we extend the scope of acquisition forensics to differentiating scanned images from camera-taken photographs and computer-generated graphics. The proposed noise features also enable tampering forensics to detect postprocessing operations on scanned images. Experimental results are presented to demonstrate the effectiveness of employing the proposed noise features for performing various forensic analysis on scanners and scanned images.