Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Optimal bandwidth allocation in a delay channel

By: Ehsan, N.; Mingyan Liu;

2006 / IEEE


This item was taken from the IEEE Periodical ' Optimal bandwidth allocation in a delay channel ' In this paper, we consider the problem of allocating bandwidth to two queues with arbitrary arrival processes, so as to minimize the total expected packet holding cost over a finite or infinite horizon. Bandwidth is in the form of time slots in a time-division multiple-access schedule. Allocation decisions are made based on one-step delayed queue backlog information. In addition, the allocation is done in batches, in that a queue can be assigned any number of slots not exceeding the total number in a batch. We show for a two queue system that if the holding cost as a function of the packet backlog in the system is nondecreasing, supermodular, and superconvex, then: 1) the value function at each slot will also satisfy these properties; 2) the optimal policy for assigning a single slot is of the threshold type; and 3) optimally allocating M slots at a time can be achieved by repeatedly using a policy that assigns each slot optimally given the previous allocations. Thus, the problem of finding the optimal allocation strategy for a batch of slots reduces to that of optimally allocating a single slot, which is conceptually much easier to obtain. These results are applied to the case of linear and equal holding costs, and we also present a special case where the above results extend to more than two queues