Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

Gyro-BWO experiments using a helical interaction waveguide

By: Phelps, A.D.R.; Cross, A.W.; Young, A.R.; Ronald, K.; He, W.; Denisov, G.G.; Whyte, C.G.; Samsonov, S.V.; Bratman, V.L.; Speirs, D.C.; Robertson, C.W.; Thomson, J.; Rafferty, E.G.;

2005 / IEEE

Description

This item was taken from the IEEE Periodical ' Gyro-BWO experiments using a helical interaction waveguide ' A helically corrugated waveguide was used for a gyrotron backward-wave oscillator (gyro-BWO) experiment. A thermionic cathode was used to produce an electron beam of 90-215 keV in energy, 2-3 A in current, and pitch alpha of up to 1.6. The oscillator achieved high-efficiency frequency-tunable operation. At a fixed beam voltage of 185 kV and a current of 2 A, the output frequency was tuned by adjusting the magnetic field in the interaction cavity. A maximum power of 62 kW and a 3-dB frequency-tuning band of 8.0-9.5 GHz (17% relative tuning range) with a maximum electronic efficiency of 16.5% were measured. In addition, the interaction frequency could be tuned by varying the electron beam energy. At a fixed cavity magnetic field of 0.195 T, the output frequency and power from the gyro-BWO were measured as a function of tuning electron beam energy while the beam current was maintained at 2.5 A. A 3-dB relative frequency tuning range of 8% was measured when the electron beam voltage was changed from 215 to 110 kV.