Your Search Results

Use this resource - and many more! - in your textbook!

AcademicPub holds over eight million pieces of educational content for you to mix-and-match your way.

Experience the freedom of customizing your course pack with AcademicPub!
Not an educator but still interested in using this content? No problem! Visit our provider's page to contact the publisher and get permission directly.

The impact of intra-die device parameter variations on path delays and on the design for yield of low voltage digital circuits

By: Berthold, J.; Eisele, M.; Mahnkopf, R.; Schmitt-Landsiedel, D.;

1997 / IEEE

Description

This item was taken from the IEEE Periodical ' The impact of intra-die device parameter variations on path delays and on the design for yield of low voltage digital circuits ' The yield of low voltage digital circuits is found to he sensitive to local gate delay variations due to uncorrelated intra-die parameter deviations. Caused by statistical deviations of the doping concentration they lead to more pronounced delay variations for minimum transistor sizes. Their influence on path delays in digital circuits is verified using a carry select adder test circuit fabricated in 0.5 and 0.35 /spl mu/m complementary metal-oxide-semiconductor (CMOS) technologies with two different threshold voltages. The increase of the path delay variations for smaller device dimensions and reduced supply voltages as well as the dependence on the path length is shown. It is found that circuits with a large number of critical paths and with a low logic depth are most sensitive to uncorrelated gate delay variations. Scenarios for future technologies show the increased impact of uncorrelated delay variations on digital design. A reduction of the maximal clock frequency of 10% is found for, for example, highly pipelined systems realized in a 0.18-/spl mu/m CMOS technology.